cytisine.org provides general information regarding cytisine

Quit Smoking with Tabex
Sopharma Shop
  • 1

    World Health Organization WHO Report on the Global Tobacco Epidemic, 2009. World Health Organization: Geneva, Switzerland, 2008.

  • 2

    Sullivan PF, Kendler KS . The genetic epidemiology of smoking. Nicotine Tob Res 1999; 1: S51–S57.

    Article 
    PubMed 

    Google Scholar
     

  • 3

    Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 2007; 16: 24–35.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4

    Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008; 452: 638–642.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5

    Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 2010; 42: 448–453.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6

    Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 2010; 42: 436–440.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7

    Tobacco and Genetics Consortium . Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 2010; 42: 441–447.

    Article 
    CAS 

    Google Scholar
     

  • 8

    David SP, Hamidovic A, Chen GK, Bergen AW, Wessel J, Kasberger JL et al. Genome-wide meta-analyses of smoking behaviors in African Americans. Transl Psychiatry 2012; 2: e119.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9

    Rice JP, Hartz SM, Agrawal A, Almasy L, Bennett S, Breslau N et al. CHRNB3 is more strongly associated with Fagerstrom test for cigarette dependence-based nicotine dependence than cigarettes per day: phenotype definition changes genome-wide association studies results. Addiction 2012; 107: 2019–2028.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10

    Fagerstrom KO . Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addict Behav 1978; 3: 235–241.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11

    Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO . The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict 1991; 86: 1119–1127.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12

    Transdisciplinary Tobacco Use Research Center (TTURC) Tobacco Dependence, Baker TB, Piper ME, McCarthy DE, Bolt DM, Smith SS et al. Time to first cigarette in the morning as an index of ability to quit smoking: implications for nicotine dependence. Nicotine Tob Res 2007; 9: S555–S570.

    Article 

    Google Scholar
     

  • 13

    Johnson EO, Morgan-Lopez AA, Breslau N, Hatsukami DK, Bierut LJ . Test of measurement invariance of the FTND across demographic groups: assessment, effect size, and prediction of cessation. Drug Alcohol Depend 2008; 93: 260–270.

    Article 
    PubMed 

    Google Scholar
     

  • 14

    Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, Rotunno M et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet 2009; 85: 679–691.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15

    Landi MT, Consonni D, Rotunno M, Bergen AW, Goldstein AM, Lubin JH et al. Environment And Genetics in Lung cancer Etiology (EAGLE) study: an integrative population-based case-control study of lung cancer. BMC Public Health 2008; 8: 203.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16

    Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH et al. Genetic epidemiology of COPD (COPDGene) study design. COPD 2010; 7: 32–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18

    Gulcher JR, Kristjansson K, Gudbjartsson H, Stefansson K . Protection of privacy by third-party encryption in genetic research in Iceland. Eur J Hum Genet 2000; 8: 739–742.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19

    Sulem P, Gudbjartsson DF, Walters GB, Helgadottir HT, Helgason A, Gudjonsson SA et al. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat Genet 2011; 43: 1127–1130.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20

    Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T et al. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol 2010; 34: 591–602.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21

    Johnson EO, Hancock DB, Levy JL, Gaddis NC, Saccone NL, Bierut LJ et al. Imputation across genotyping arrays for genome-wide association studies: assessment of bias and a correction strategy. Hum Genet 2013; 132: 509–522.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22

    Edenberg HJ . The collaborative study on the genetics of alcoholism: an update. Alcohol Res Health 2002; 26: 214–218.

    PubMed 

    Google Scholar
     

  • 23

    Bierut LJ, Strickland JR, Thompson JR, Afful SE, Cottler LB . Drug use and dependence in cocaine dependent subjects, community-based individuals, and their siblings. Drug Alcohol Depend 2008; 95: 14–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24

    Pritchard JK, Stephens M, Donnelly P . Inference of population structure using multilocus genotype data. Genetics 2000; 155: 945–959.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25

    Howie B, Marchini J, Stephens M . Genotype imputation with thousands of genomes. G3 (Bethesda) 2011; 1: 457–470.

    Article 

    Google Scholar
     

  • 26

    Delaneau O, Zagury J, Marchini J . Improved whole chromosome phasing for disease and population genetic studies. Nat Methods 2013; 10: 5–6.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 27

    Beecham GW, Martin ER, Gilbert JR, Haines JL, Pericak-Vance MA . APOE is not associated with Alzheimer disease: a cautionary tale of genotype imputation. Ann Hum Genet 2010; 74: 189–194.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28

    Marchini J, Howie B . Genotype imputation for genome-wide association studies. Nat Rev Genet 2010; 11: 499–511.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29

    Kong A, Masson G, Frigge ML, Gylfason A, Zusmanovich P, Thorleifsson G et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat Genet 2008; 40: 1068–1075.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30

    Aulchenko YS, Struchalin MV, van Duijn CM . ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 2010; 11: 134.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31

    Willer CJ, Li Y, Abecasis GR . META: fast and efficient meta-analysis of genomewide association scans. Bionformatics 2010; 26: 2190–2191.

    CAS 
    Article 

    Google Scholar
     

  • 32

    Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J . Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 2006; 11: 193–206.

    Article 
    PubMed 

    Google Scholar
     

  • 33

    Gelernter J, Kranzler HR, Sherva R, Almasy L, Koesterer R, Smith AH et al. Genome-wide association study of alcohol dependence:significant findings in African- and European-Americans including novel risk loci. Mol Psychiatry 2014; 19: 41–49.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 34

    Gelernter J, Sherva R, Koesterer R, Almasy L, Zhao H, Kranzler HR et al. Genome-wide association study of cocaine dependence and related traits: FAM53B identified as a risk gene. Mol Psychiatry 2014; 19: 717–723.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 35

    Gelernter J, Kranzler HR, Sherva R, Koesterer R, Almasy L, Zhao H et al. Genome-wide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways. Biol Psychiatry 2014; 76: 66–74.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36

    Kaprio J . The Finnish Twin Cohort Study: an update. Twin Res Hum Genet 2013; 16: 157–162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37

    Kaprio J . Twin studies in Finland 2006. Twin Res Hum Genet 2006; 9: 772–777.

    Article 
    PubMed 

    Google Scholar
     

  • 38

    Loukola A, Wedenoja J, Keskitalo-Vuokko K, Broms U, Korhonen T, Ripatti S et al. Genome-wide association study on detailed profiles of smoking behavior and nicotine dependence in a twin sample. Mol Psychiatry 2014; 19: 615–624.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39

    Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X, Estrada K et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet 2009; 41: 399–406.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40

    Boyles AL, Harris SF, Rooney AA, Thayer KA . Forest Plot Viewer: a new graphing tool. Epidemiology 2011; 22: 746–747.

    Article 
    PubMed 

    Google Scholar
     

  • 41

    Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 2010; 26: 2336–2337.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42

    Barrett JC . Haploview: visualization and analysis of SNP genotype data. Cold Spring Harb Protoc 2009; 2009: pdb ip71.

    Article 
    PubMed 

    Google Scholar
     

  • 43

    Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S et al. Ensembl 2014. Nucleic Acids Res 2014; 42: D749–D755.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44

    GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013; 45: 580–585.

    Article 
    CAS 

    Google Scholar
     

  • 45

    GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 2015; 348: 648–660.

    Article 
    CAS 

    Google Scholar
     

  • 46

    Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci 2014; 17: 1418–1428.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47

    Wang Y, McKay JD, Rafnar T, Wang Z, Timofeeva MN, Broderick P et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat Genet 2014; 46: 736–741.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48

    Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452: 633–637.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 49

    Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet 2008; 40: 1407–1409.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50

    Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 2008; 40: 616–622.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51

    Timofeeva MN, Hung RJ, Rafnar T, Christiani DC, Field JK, Bickeboller H et al. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet 2012; 21: 4980–4995.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52

    Devlin B, Roeder K . Genomic control for association studies. Biometrics 1999; 55: 997–1004.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 53

    Zollner S, Pritchard JK . Overcoming the winner’s curse: estimating penetrance parameters from case-control data. Am J Hum Genet 2007; 80: 605–615.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54

    Yoon D, Kim YJ, Cui WY, Van der Vaart A, Cho YS, Lee JY et al. Large-scale genome-wide association study of Asian population reveals genetic factors in FRMD4A and other loci influencing smoking initiation and nicotine dependence. Hum Genet 2012; 131: 1009–1021.

    Article 
    PubMed 

    Google Scholar
     

  • 55

    Argos M, Tong L, Pierce BL, Rakibuz-Zaman M, Ahmed A, Islam T et al. Genome-wide association study of smoking behaviours among Bangladeshi adults. J Med Genet 2014; 51: 327–333.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56

    Keskitalo K, Broms U, Heliovaara M, Ripatti S, Surakka I, Perola M et al. Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. Hum Mol Genet 2009; 18: 4007–4012.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57

    Munafo MR, Timofeeva MN, Morris RW, Prieto-Merino D, Sattar N, Brennan P et al. Association between genetic variants on chromosome 15q25 locus and objective measures of tobacco exposure. J Natl Cancer Inst 2012; 104: 740–748.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58

    Trabzuni D, Ryten M, Walker R, Smith C, Imran S, Ramasamy A et al. Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. J Neurochem 2011; 119: 275–282.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59

    Rose JE, Corrigall WA . Nicotine self-administration in animals and humans: similarities and differences. Psychopharmacology 1997; 130: 28–40.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 60

    Pontieri FE, Tanda G, Orzi F, Di Chiara G . Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 1996; 382: 255–257.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61

    Koob GF . Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 1992; 13: 177–184.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 62

    Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ . A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 1992; 41: 31–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 63

    Millar NS, Gotti C . Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 2009; 56: 237–246.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 64

    Marubio LM, Gardier AM, Durier S, David D, Klink R, Arroyo-Jimenez MM et al. Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. Eur J Neurosci 2003; 17: 1329–1337.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 65

    McGranahan TM, Patzlaff NE, Grady SR, Heinemann SF, Booker TK . alpha4beta2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief. J Neurosci 2011; 31: 10891–10902.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66

    Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C et al. Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 2004; 306: 1029–1032.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 67

    Tapper AR, McKinney SL, Marks MJ, Lester HA . Nicotine responses in hypersensitive and knockout alpha 4 mice account for tolerance to both hypothermia and locomotor suppression in wild-type mice. Physiol Genomics 2007; 31: 422–428.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 68

    Bitner RS, Nikkel AL, Curzon P, Donnelly-Roberts DL, Puttfarcken PS, Namovic M et al. Reduced nicotinic receptor-mediated antinociception following in vivo antisense knock-down in rat. Brain Res 2000; 871: 66–74.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 69

    Jorenby DE, Hays JT, Rigotti NA, Azoulay S, Watsky EJ, Williams KE et al. Efficacy of varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. JAMA 2006; 296: 56–63.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 70

    Benowitz NL . Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 2009; 49: 57–71.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71

    West R, Zatonski W, Cedzynska M, Lewandowska D, Pazik J, Aveyard P et al. Placebo-controlled trial of cytisine for smoking cessation. N Engl J Med 2011; 365: 1193–1200.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 72

    Gu F, Wacholder S, Kovalchik S, Panagiotou OA, Reyes-Guzman C, Freedman ND et al. Time to smoke first morning cigarette and lung cancer in a case-control study. J Natl Cancer Inst 2014; 106: dju118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73

    Guertin KA, Gu F, Wacholder S, Freedman ND, Panagiotou OA, Reyes-Guzman C et al. Time to first morning cigarette and risk of chronic obstructive pulmonary disease: smokers in the PLCO cancer screening trial. PLoS One 2015; 10: e0125973.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74

    Han S, Gelernter J, Luo X, Yang BZ . Meta-analysis of 15 genome-wide linkage scans of smoking behavior. Biol Psychiatry 2010; 67: 12–19.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75

    Keskitalo-Vuokko K, Hallfors J, Broms U, Pergadia ML, Saccone SF, Loukola A et al. Chromosome 20 shows linkage with DSM-IV nicotine dependence in Finnish adult smokers. Nicotine Tob Res 2012; 14: 153–160.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 76

    Saccone SF, Hinrichs AL, Saccone NL, Chase GA, Konvicka K, Madden PA et al. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. Hum Mol Genet 2007; 16: 36–49.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 77

    Feng Y, Niu T, Xing H, Xu X, Chen C, Peng S et al. A common haplotype of the nicotine acetylcholine receptor alpha 4 subunit gene is associated with vulnerability to nicotine addiction in men. Am J Hum Genet 2004; 75: 112–121.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78

    Li MD, Beuten J, Ma JZ, Payne TJ, Lou XY, Garcia V et al. Ethnic- and gender-specific association of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet 2005; 14: 1211–1219.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 79

    Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet 2007; 80: 1125–1137.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80

    Hutchison KE, Allen DL, Filbey FM, Jepson C, Lerman C, Benowitz NL et al. CHRNA4 and tobacco dependence: from gene regulation to treatment outcome. Arch Gen Psychiatry 2007; 64: 1078–1086.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 81

    Li MD, Lou XY, Chen G, Ma JZ, Elston RC . Gene-gene interactions among CHRNA4, CHRNB2, BDNF, and NTRK2 in nicotine dependence. Biol Psychiatry 2008; 64: 951–957.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82

    Saccone NL, Saccone SF, Hinrichs AL, Stitzel JA, Duan W, Pergadia ML et al. Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 453–466.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83

    Breitling LP, Dahmen N, Mittelstrass K, Rujescu D, Gallinat J, Fehr C et al. Association of nicotinic acetylcholine receptor subunit alpha 4 polymorphisms with nicotine dependence in 5500 Germans. Pharmacogenomics J 2009; 9: 219–224.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 84

    Han S, Yang BZ, Kranzler HR, Oslin D, Anton R, Gelernter J . Association of CHRNA4 polymorphisms with smoking behavior in two populations. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 421–429.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • 85

    Saccone NL, Schwantes-An TH, Wang JC, Grucza RA, Breslau N, Hatsukami D et al. Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans. Genes Brain Behav 2010; 9: 741–750.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86

    Wei J, Chu C, Wang Y, Yang Y, Wang Q, Li T et al. Association study of 45 candidate genes in nicotine dependence in Han Chinese. Addict Behav 2012; 37: 622–626.

    Article 
    PubMed 

    Google Scholar
     

  • 87

    Kamens HM, Corley RP, McQueen MB, Stallings MC, Hopfer CJ, Crowley TJ et al. Nominal association with CHRNA4 variants and nicotine dependence. Genes Brain Behav 2013; 12: 297–304.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 88

    Chen HI, Shinkai T, Utsunomiya K, Yamada K, Sakata S, Fukunaka Y et al. Possible association of nicotinic acetylcholine receptor gene (CHRNA4 and CHRNB2) polymorphisms with nicotine dependence in Japanese males: an exploratory study. Pharmacopsychiatry 2013; 46: 77–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 89

    Keskitalo-Vuokko K, Pitkaniemi J, Broms U, Heliovaara M, Aromaa A, Perola M et al. Associations of nicotine intake measures with CHRN genes in Finnish smokers. Nicotine Tob Res 2011; 13: 686–690.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90

    McClure-Begley TD, Papke RL, Stone KL, Stokes C, Levy AD, Gelernter J et al. Rare human nicotinic acetylcholine receptor alpha4 subunit (CHRNA4) variants affect expression and function of high-affinity nicotinic acetylcholine receptors. J Pharmacol Exp Ther 2014; 348: 410–420.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91

    Thorgeirsson TE, Steinberg S, Reginsson GW, Bjornsdottir G, Rafnar T, Jonsdottir I et al. A rare missense mutation in CHRNA4 associates with smoking behavior and its consequences. Submitted.

  • 92

    Xie P, Kranzler HR, Krauthammer M, Cosgrove KP, Oslin D, Anton RF et al. Rare nonsynonymous variants in alpha-4 nicotinic acetylcholine receptor gene protect against nicotine dependence. Biol Psychiatry 2011; 70: 528–536.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source: https://www.nature.com/articles/tp2015149